Su Jiang

Email: <u>sujiang@lbl.gov</u> Homepage: <u>https://sujiang94.github.io</u>

RESEARCH INTERESTS	Scientific machine learning, data assimilation, uncertainty quantification, subsurface flow simulation, environment and energy (geological carbon storage, seawater intrusion, subsurface energy development, battery modeling)		
EDUCATION	Stanford University, Stanford, CA, United States – Ph.D. in Energy Resources Engineering 2018 - 2022 Advisor: Louis J. Durlofsky Committee: Roland Horne, Daniel Tartakovsky, Simona Onori, Greg Beroza Thesis: Use of Deep Learning and Error Correction for Data-Space Inversion and Model-Based History Matching		
	 M.S. in Energy Resources Engineering 2016 - 2018 Thesis: <u>Data-Space Inversion with Variable Well Controls in the Prediction Period</u> 		
	Tsinghua University , Beijing, China2012 - 2016- Bachelor in Environmental Engineering (with honors)2012 - 2016- Bachelor in Economics (Dual degree)2012 - 2016		
PROFESSIONAL EXPERIENCE	Lawrence Berkeley National Laboratory, Postdoc Fellow 2024 - Present <i>Project</i> : Surrogate Model and Uncertainty Quantification for Seawater Intrusion and Watershed Management, funded by U.S. DOD Strategic Environmental Research and Development Program (SERDP)		
	Stanford University, Postdoc Fellow2022 - 2023Project: Data-Space Inversion and Model-Based History Matching for CO2 Storageand Energy Systems		
	Lawrence Livermore National Laboratory, Research Intern Summer 2021 <i>Project</i> : Deep-Learning-Based Surrogate Flow Modeling for 3D CO ₂ Storage Problem with Multi-Fidelity Data, funded by U.S. DOE Science-informed Machine Learning for Accelerating Real-Time Decisions (SMART) in Carbon Storage Applications Initiative		
	ExxonMobil Corporation, Research Intern Summer 2020 <i>Project</i> : Reservoir Performance Prediction with Distributed Gauss-Newton Method and Global Sensitivity Analysis for Optimization		
	Chevron Technical Center, Research InternSummer 2019Project: Data Assimilation for Naturally Fractured ReservoirsSummer 2019		
JOURNAL PUBLICATIONS	 S. Jiang*, and L. J. Durlofsky. History Matching for Geological Carbon Storage using Data-Space Inversion with Spatio-Temporal Data Parameterization. Inter- national Journal of Greenhouse Gas Control (2024). doi:<u>10.1016/j.ijggc.2024.104124</u> 		
	 Y. Han[*], F. P. Hamon, S. Jiang, and L. J. Durlofsky. Surrogate Model for CO₂ Storage and Its Use in MCMC-based History Matching. Advances in Water 		

Resources (2024). doi:10.1016/j.advwatres.2024.104678

- H. Wu, Z. Jin*, S. Jiang, H. Tang, J. P. Morris, J. Zhang, and B. Zhang. Selecting Appropriate Model Complexity: An Example of Tracer Inversion for Thermal Prediction in Enhanced Geothermal Systems. *Water Resources Research* (2024). doi:10.1029/2023WR036146
- S. Jiang*, and L. J. Durlofsky. Use of Multifidelity Training Data and Transfer Learning for Efficient Construction of Subsurface Flow Surrogate Models. *Journal of Computational Physics* (2023). doi:10.1016/j.jcp.2022.111800
- 6. H. Tang*, P. Fu, H. Jo, S. Jiang*, C. S. Sherman, F. Hamon, N. A. Azzolia, and J. P. Morris. (co-corresponding author) Deep Learning-Accelerated 3D Carbon Storage Reservoir Pressure Forecasting Based on Data Assimilation Using Surface Displacement from InSAR. *International Journal of Greenhouse Gas Control* (2022). doi:10.1016/j.ijggc.2022.103765
- 5. S. Jiang*, and L. J. Durlofsky. Treatment of Model Error in Subsurface Flow History Matching using a Data-Space Method. *Journal of Hydrology* (2021). doi:10.1016/j.jhydrol.2021.127063
- S. Jiang*, M. Hui, and L. J. Durlofsky. Application of RAE-based Data-space Inversion for a Naturally Fractured Reservoir. Frontiers in Applied Mathematics and Statistics (2021). doi:10.3389/fams.2021.686754
- S. Jiang*, and L. J. Durlofsky. Data-Space Inversion Using a Recurrent Autoencoder for Time-Series Parameterization. *Computational Geosciences* (2021). doi: 10.1007/s10596-020-10014-1
- S. Jiang*, W. Sun, and L. J. Durlofsky. A Data-Space Inversion Procedure for Well Control Optimization and Closed-Loop Reservoir Management. *Computational Geosciences* (2020). doi: 10.1007/s10596-019-09853-4
- Y. Chen, S. Jiang, D. Zhang^{*} and C. Liu. (co-first author) An Adsorbed Gas Estimation Model for Shale Gas Reservoirs via Statistical Learning. *Applied Energy* (2017). doi: <u>10.1016/j.apenergy.2017.04.029</u> indicates corresponding author

MANUSCRIPTS UNDER REVIEW AND IN PREPARATION

- 6. S. Jiang*, C. Liu, and D. Dwivedi. GeoFUSE: A High-Efficiency Surrogate Model for Seawater Intrusion Prediction and Uncertainty Reduction, submitted to *Water Resources Research*, under review, 2024.
- 5. S. Jiang*, C. Liu, D. Dwivedi, and D. Tartakovsky. Enhancing Predictive Capabilities for Seawater Intrusion over U.S. through Transfer Learning, 2024 (in prep.)
- 4. S. Jiang*, W. Ma, S. Onori, and L. J. Durlofsky. Surrogate Model and Uncertainty Quantification for Lithium-ion Battery Pack Performance, 2024 (in prep.)

	 X. He*, S. Jiang, and L. J. Durlofsky. Data-Space Inversion for Prediction of Fault Slip Tendency in CO₂ Storage, 2024 (in prep.)
	 J. Zhao, S. Jiang, and D. Zhang[*]. Mechanical Classification of Organic-Rich Shale Based on High-Speed Nanoindentation and Machine Learning, to be sub- mitted to <i>Journal of Geophysical Research: Solid Earth</i>, 2024.
	1. D. Dwivedi [*] , G. Hammond, S. Jiang , et al. Reactive Transport Benchmarks for Problems Involving Gaseous Species, 2024 (in prep.)
BOOK CHAPTERS	 S. Jiang, and L. J. Durlofsky. Deep-Neural-Network Surrogate Flow Models for History Matching and Uncertainty Quantification, in <i>Machine Learning Applica-</i> tions in Subsurface Energy Resource Management: State of the Art and Future Prognosis, Chp. 14, S. Mishra, ed., CRC Press (2022).
CONFERENCE PUBLICATIONS	 S. Jiang, H. Tang, P. Fu, and H. Jo. A Transfer Learning-Based Surrogate Model for Geological Carbon Storage with Multi-Fidelity Training Data. <i>NeurIPS 2021</i> Workshop, Tackling Climate Change with Machine Learning (2021).
	 S. Jiang, W. Sun, and L. J. Durlofsky. A Data-Space Approach for Well Control Optimization under Uncertainty. ECMOR XVI-16th European Conference on the Mathematics of Geological Reservoirs (2018), Barcelona, Spain.
INVITED TALKS	• "Data Assimilation for Geological CO ₂ Storage Using Deep Learning." Invited webinar, SPE Gulf Coast Section , Online, October 2024
	 "Data Assimilation for Geological CO₂ Storage Using Deep Learning." Invited seminar talk, Department of Petroleum Engineering, Texas A&M University, College Station, TX, USA, June 2024
	• "Deep-learning-based Surrogate Model and Uncertainty Quantification for Bat- tery Pack Performance", Stanford and Toyota Research Institute Meeting , Stanford, CA, April 2024
	 "Deep Learning for Hydrogeology.", invited by Anima Anandkumar, California Institute of Technology, online, March 2024
	• "Data Assimilation for Geological CO ₂ Storage Using Deep Learning." Invited seminar talk, Department of Earth, Environmental and Planetary Sciences, Rice University , Houston, TX, USA, February 2024
	• "Surrogate Modeling and Data Assimilation for Subsurface Energy Storage and CO ₂ Storage." Invited seminar talk, Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology , Hong Kong, China, August 2023

- "Deep-Learning-Based History Matching for Subsurface Flow." Invited talk, Exxon-Mobil Corporation, Houston, TX, USA, September 2023
- "Deep-Learning-Based Surrogate Model for Geological Carbon Storage." Invited seminar talk, Computational Geoscience Seminar, Lawrence Livermore National Laboratory, Online, May 2023
- "Surrogate Model and Data Assimilation in Subsurface Flow System." Invited seminar talk, Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO, USA, May 2023
- "Data-Space Inversion and Model-based History Matching for Subsurface Energy System." Invited talk, Los Alamos National Laboratory, Online, May 2023
- "Data-Space Inversion Using a Recurrent Autoencoder for Time-Series Parameterization." Computational Geoscience Seminar, Lawrence Livermore National Laboratory, Online, 2021

SELECTED
TALKS• "Surrogate Model for Data Assimilation in Seawater Intrusion Problems." Bien-
nial Bay-Delta Science Conference, Sacramento, CA, USA, September 2024

- "Data-space Inversion for CO₂ Storage with Flow and Geomechanics." Engineering Mechanics Institute Conference (EMI), Chicago, IL, USA, May 2024
- "Machine Learning for Mechanical Classification of Organic-rice Shale based on High-speed Nanoindentation." European Geosciences Union (EGU) General Assembly, Vienna, Austria, April 2024
- "Data-space Inversion for History Matching Carbon Storage Operations." Stanford SUETRI-B / Smart Fields Annual Meeting, Stanford, CA, April 2024
- "Data-space Inversion for Forecasting Flow and Geomechanical Quantities in CO₂ Storage." AGU Fall Meeting, San Francisco, CA, USA, December 2023
- "Surrogate Model for CO₂ Storage with Coupled Flow and Geomechanics and Its Use in MCMC-based Data Assimilation." Engineering Mechanics Institute Conference (EMI), Atlanta, GA, USA, June 2023
- "Data-Space Inversion with Deep-Learning-Based Parameterization for Geological Carbon Storage." Data for Sustainability Conference, Stanford, CA, USA, April 2023
- "Use of Multifidelity Training Data and Transfer Learning for Efficient Surrogate Model Construction." Engineering Mechanics Institute Conference (EMI), Baltimore, MD, USA, May 2022

	 "Use of Multifidelity Data and Transfer Learning for Efficient Construction of Subsurface Flow Surrogate Models." Stanford Earth Sciences Algorithm & Ar- chitectures Initiative Affiliate Meeting, Stanford, CA, USA, May 2022 "A Transfer Learning-Based Surrogate Model for Geological Carbon Storage with Multi-Fidelity Training Data." NeurIPS 2021 Workshop, Tackling Climate Change with Machine Learning, Online, 2021 		
	• "Data-Space Inversion with Imperfect Subsurface Mod Consortium Annual Affiliates Meeting, Online, 2020	dels." Stanford Smart Fields	
	• "A Data-Space Approach for Well Control Optimic ECMOR XVI-16th European Conference on the Ma Barcelona, Spain, 2018	zation under Uncertainty." athematics of Oil Recovery,	
HONORS AND AWARDS	• Chevron CoRE Student Fellow	2016 - 2022	
	• Outstanding Graduate Student of Tsinghua Universi	ty 2016	
	• Outstanding Leadership at Tsinghua University	2015	
	• Tsinghua Academic Scholarship	2013 - 2016	
	• Tsinghua Freshman Fellowship	2012	
TEACHING EXPERIENCE	 Advanced Subsurface Flow Simulation (Stanford EN Teaching Assistant, Stanford University Provided problem sessions, mentored project, organize work and exams 	ERGY 224) 2018 Fall ed discussion, graded home-	
	Teaching Experience in Energy Resources Engineer Department of Energy Resources Engineering, Stanford Un	ring (ENERGY 359) niversity 2019 Spring	
MENTORING EXPERIENCE	Research Mentor Bex Abylkhani (PhD candidate, Stanford) Guido Di Federico (PhD candidate, Stanford) Xiaowen He (Master student, Stanford) Yifu Han (PhD candidate, Stanford)	January 2024 - Present September 2022 - Present September 2022 - Present September 2021 - Present	
	 Graduate Student Mentor Department of Energy Resources Engineering, Stanford Un Mentored two incoming graduate students through school 	niversity 2017 - 2019 the transition to graduate	
SERVICE	Journal reviewer to Water Resources Research, Journal of I putational Physics, International Journal of Greenhouse G Geosciences, Computers & Geosciences, SPE Journal, Geneering, Applied Mathematics Letters, Computers and Che	Hydrology, Journal of Com- as Control, Computational coenergy Science and Engi- emical Engineering	
	Member of Stanford Women in Fluid Dynamics, Women in Data Science, Ameri- can Geophysical Union (AGU), European Association of Geoscientists and Engineers (EAGE), Society of Petroleum Engineers (SPE)		